Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
J Clin Monit Comput ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512359

ABSTRACT

Transpulmonary pressure (PL) calculation requires esophageal pressure (PES) as a surrogate of pleural pressure (Ppl), but its calibration is a cumbersome technique. Central venous pressure (CVP) swings may reflect tidal variations in Ppl and could be used instead of PES, but the interpretation of CVP waveforms could be difficult due to superposition of heartbeat-induced pressure changes. Thus, we developed a digital filter able to remove the cardiac noise to obtain a filtered CVP (f-CVP). The aim of the study was to evaluate the accuracy of CVP and filtered CVP swings (ΔCVP and Δf-CVP, respectively) in estimating esophageal respiratory swings (ΔPES) and compare PL calculated with CVP, f-CVP and PES; then we tested the diagnostic accuracy of the f-CVP method to identify unsafe high PL levels, defined as PL>10 cmH2O. Twenty patients with acute respiratory failure (defined as PaO2/FiO2 ratio below 200 mmHg) treated with invasive mechanical ventilation and monitored with an esophageal balloon and central venous catheter were enrolled prospectively. For each patient a recording session at baseline was performed, repeated if a modification in ventilatory settings occurred. PES, CVP and airway pressure during an end-inspiratory and -expiratory pause were simultaneously recorded; CVP, f-CVP and PES waveforms were analyzed off-line and used to calculate transpulmonary pressure (PLCVP, PLf-CVP, PLPES, respectively). Δf-CVP correlated better than ΔCVP with ΔPES (r = 0.8, p = 0.001 vs. r = 0.08, p = 0.73), with a lower bias in Bland Altman analysis in favor of PLf-CVP (mean bias - 0.16, Limits of Agreement (LoA) -1.31, 0.98 cmH2O vs. mean bias - 0.79, LoA - 3.14, 1.55 cmH2O). Both PLf-CVP and PLCVP correlated well with PLPES (r = 0.98, p < 0.001 vs. r = 0.94, p < 0.001), again with a lower bias in Bland Altman analysis in favor of PLf-CVP (0.15, LoA - 0.95, 1.26 cmH2O vs. 0.80, LoA - 1.51, 3.12, cmH2O). PLf-CVP discriminated high PL value with an area under the receiver operating characteristic curve 0.99 (standard deviation, SD, 0.02) (AUC difference = 0.01 [-0.024; 0.05], p = 0.48). In mechanically ventilated patients with acute respiratory failure, the digital filtered CVP estimated ΔPES and PL obtained from digital filtered CVP represented a reliable value of standard PL measured with the esophageal method and could identify patients with non-protective ventilation settings.

2.
J Clin Med ; 13(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38256451

ABSTRACT

Prone positioning (PP) represents a therapeutic intervention with the proven capacity of ameliorating gas exchanges and ventilatory mechanics indicated in acute respiratory distress syndrome (ARDS). When PP is selectively applied to moderate-severe cases of ARDS, it sensitively affects clinical outcomes, including mortality. After the COVID-19 outbreak, clinical application of PP peaked worldwide and was applied in 60% of treated cases, according to large reports. Research on this topic has revealed many physiological underpinnings of PP, focusing on regional ventilation redistribution and the reduction of parenchymal stress and strain. However, there is a lack of evidence on biomarkers behavior in different phases and phenotypes of ARDS. Patients response to PP are, to date, decided on PaO2/FiO2 ratio improvement, whereas scarce data exist on biomarker tracking during PP. The purpose of this review is to explore current evidence on the clinical relevance of biomarkers in the setting of moderate-severe ARDS of different etiologies (i.e., COVID and non-COVID-related ARDS). Moreover, this review focuses on how PP may modulate biomarkers and which biomarkers may have a role in outcome prediction in ARDS patients.

3.
Mol Cell Proteomics ; 23(1): 100690, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065436

ABSTRACT

Serum proteomics has matured and is now able to monitor hundreds of proteins quantitatively in large cohorts of patients. However, the fine characteristics of some of the most dominant proteins in serum, the immunoglobulins, are in these studies often ignored, due to their vast, and highly personalized, diversity in sequences. Here, we focus exclusively on these personalized features in the serum proteome and distinctively chose to study individual samples from a low diversity population: elderly donors infected by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). By using mass spectrometry-based methods, immunoglobulin IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 Corona virus disease 2019 patients admitted to intensive care units. These clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and substantial changes over time, with several new clones appearing following the infection, in a few cases leading to a few, very high, abundant clones dominating their repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down, and bottom-up proteomics approaches. This revealed sequence features in line with sequences deposited in the SARS-CoV-specific antibody database. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, that subsequently dominated their serological IgG1 repertoire. Tocilizumab clearance could be monitored, and a half-life of approximately 6 days was established. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients' diagnostics, both in serum proteomics as well as in monitoring immune responses.


Subject(s)
COVID-19 , Humans , Aged , SARS-CoV-2 , Proteome , Immunoglobulin G , Immunoglobulin A , Antibodies, Viral
4.
Healthcare (Basel) ; 11(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37958047

ABSTRACT

(1) Background: Acute kidney injury (AKI) is common among critically ill COVID-19 patients, but its temporal association with prone positioning (PP) is still unknown, and no data exist on the possibility of predicting PP-associated AKI from bedside clinical variables. (2) Methods: We analyzed data from 93 COVID-19-related ARDS patients who underwent invasive mechanical ventilation (IMV) and at least one PP cycle. We collected hemodynamic variables, respiratory mechanics, and circulating biomarkers before, during, and after the first PP cycle. PP-associated AKI (PP-AKI) was defined as AKI diagnosed any time from the start of PP to 48 h after returning to the supine position. A t-test for independent samples was used to test for the differences between groups, while binomial logistical regression was performed to assess variables independently associated with PP-associated AKI. (3) Results: A total of 48/93 (52%) patients developed PP-AKI, with a median onset at 24 [13.5-44.5] hours after starting PP. No significant differences in demographic characteristics between groups were found. Before starting the first PP cycle, patients who developed PP-AKI had a significantly lower cumulative fluid balance (CFB), even when normalized for body weight (p = 0.006). Central venous pressure (CVP) values, measured before the first PP (OR 0.803, 95% CI [0.684-0.942], p = 0.007), as well as BMI (OR 1.153, 95% CI = [1.013-1.313], p = 0.031), were independently associated with the development of PP-AKI. In the multivariable regression analysis, a lower CVP before the first PP cycle was independently associated with ventilator-free days (OR 0.271, 95% CI [0.123-0.936], p = 0.011) and with ICU mortality (OR:0.831, 95% CI [0.699-0.989], p = 0.037). (4) Conclusions: Acute kidney injury occurs frequently in invasively ventilated severe COVID-19 ARDS patients undergoing their first prone positioning cycle. Higher BMI and lower CVP before PP are independently associated with the occurrence of AKI during prone positioning.

5.
J Crit Care ; 78: 154398, 2023 12.
Article in English | MEDLINE | ID: mdl-37531923

ABSTRACT

PURPOSE: To test the agreement of the Clinical Frailty Scale (CFS) and the Tilburg Frailty Indicator (TFI), their association with 3, 6 months and 1-year mortality and the trajectory of frailty in a mixed population of ICU survivors. MATERIAL AND METHODS: This is a prospective, multicenter, longitudinal study on ICU survivors ≥18 years old with an ICU stay >72 h. For each patient, sociodemographic and clinical data were collected. Frailty was assessed during ICU stay and at 3, 6, 12 months after ICU discharge, through both CFS and TFI. RESULTS: 124 patients with a mean age of 66 years old were enrolled. The baseline prevalence of frailty was 15.3% by CFS and 44.4% by TFI. Baseline CFS and TFI correlated but showed low agreement (Cohen's K = 0.23, p < 0.001). Baseline CFS score, but not TFI, was significantly associated to 1 year mortality. Moreover, CFS score during the follow-up was independently associated 1-year mortality (OR = 1.43; 95% CI: 1.18-1.73). CONCLUSIONS: CFS and TFI identify different populations of frail ICU survivors. Frail patients before ICU according to CFS have a significantly higher mortality after ICU discharge. The CFS during follow-up is an independent negative prognostic factor of long-term mortality in the ICU population.


Subject(s)
Frailty , Humans , Aged , Adolescent , Frailty/epidemiology , Prospective Studies , Longitudinal Studies , Hospital Mortality , Intensive Care Units , Frail Elderly
6.
Crit Care ; 27(1): 138, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041553

ABSTRACT

BACKGROUND: There is very limited evidence identifying factors that increase respiratory drive in hypoxemic intubated patients. Most physiological determinants of respiratory drive cannot be directly assessed at the bedside (e.g., neural inputs from chemo- or mechano-receptors), but clinical risk factors commonly measured in intubated patients could be correlated with increased drive. We aimed to identify clinical risk factors independently associated with increased respiratory drive in intubated hypoxemic patients. METHODS: We analyzed the physiological dataset from a multicenter trial on intubated hypoxemic patients on pressure support (PS). Patients with simultaneous assessment of the inspiratory drop in airway pressure at 0.1-s during an occlusion (P0.1) and risk factors for increased respiratory drive on day 1 were included. We evaluated the independent correlation of the following clinical risk factors for increased drive with P0.1: severity of lung injury (unilateral vs. bilateral pulmonary infiltrates, PaO2/FiO2, ventilatory ratio); arterial blood gases (PaO2, PaCO2 and pHa); sedation (RASS score and drug type); SOFA score; arterial lactate; ventilation settings (PEEP, level of PS, addition of sigh breaths). RESULTS: Two-hundred seventeen patients were included. Clinical risk factors independently correlated with higher P0.1 were bilateral infiltrates (increase ratio [IR] 1.233, 95%CI 1.047-1.451, p = 0.012); lower PaO2/FiO2 (IR 0.998, 95%CI 0.997-0.999, p = 0.004); higher ventilatory ratio (IR 1.538, 95%CI 1.267-1.867, p < 0.001); lower pHa (IR 0.104, 95%CI 0.024-0.464, p = 0.003). Higher PEEP was correlated with lower P0.1 (IR 0.951, 95%CI 0.921-0.982, p = 0.002), while sedation depth and drugs were not associated with P0.1. CONCLUSIONS: Independent clinical risk factors for higher respiratory drive in intubated hypoxemic patients include the extent of lung edema and of ventilation-perfusion mismatch, lower pHa, and lower PEEP, while sedation strategy does not affect drive. These data underline the multifactorial nature of increased respiratory drive.


Subject(s)
Positive-Pressure Respiration , Respiration, Artificial , Humans , Positive-Pressure Respiration/adverse effects , Respiration , Lung , Risk Factors
8.
J Inflamm (Lond) ; 20(1): 11, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941580

ABSTRACT

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.

9.
J Clin Med ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36498656

ABSTRACT

BACKGROUND: The COVID-19 pandemic had a relevant impact on the organization of intensive care units (ICU) and may have reduced the overall compliance with healthcare-associated infections (HAIs) prevention programs. Invasively ventilated patients are at high risk of ICU-associated infection, but there is little evidence regarding the impact of the pandemic on their occurrence in non-COVID-19 patients. Moreover, little is known of antibiotic prescription trends in the ICU during the first wave of the pandemic. The purpose of this investigation is to assess the incidence, characteristics, and risk factors for ICU-associated HAIs in a population of invasively ventilated patients affected by non-COVID-19 acute respiratory failure (ARF) admitted to the ICU in the first wave of the COVID-19 pandemic, and to evaluate the ICU antimicrobial prescription strategies. Moreover, we compared HAIs and antibiotic use to a cohort of ARF patients admitted to the ICU the year before the pandemic during the same period. METHODS: this is a retrospective, single-centered cohort study conducted at S. Anna University Hospital (Ferrara, Italy). We enrolled patients admitted to the ICU for acute respiratory failure requiring invasive mechanical ventilation (MV) between February and April 2020 (intra-pandemic group, IP) and February and April 2019 (before the pandemic group, PP). We excluded patients admitted to the ICU for COVID-19 pneumonia. We recorded patients' baseline characteristics, ICU-associated procedures and devices. Moreover, we evaluated antimicrobial therapy and classified it as prophylactic, empirical or target therapy, according to the evidence of infection at the time of prescription and to the presence of a positive culture sample. We compared the results of the two groups (PP and IP) to assess differences between the two years. RESULTS: One hundred and twenty-eight patients were screened for inclusion and 83 patients were analyzed, 45 and 38 in the PP and I group, respectively. We found a comparable incidence of HAIs (62.2% vs. 65.8%, p = 0.74) and multidrug-resistant (MDR) isolations (44.4% vs. 36.8% p= 0.48) in the two groups. The year of ICU admission was not independently associated with an increased risk of developing HAIs (OR = 0.35, 95% CI 0.16-1.92, p = 0.55). The approach to antimicrobial therapy was characterized by a significant reduction in total antimicrobial use (21.4 ± 18.7 vs. 11.6 ± 9.4 days, p = 0.003), especially of target therapy, in the IP group. CONCLUSIONS: ICU admission for non-COVID-19 ARF during the first wave of the SARS-CoV-2 pandemic was not associated with an increased risk of ICU-associated HAIs. Nevertheless, ICU prescription of antimicrobial therapy changed and significantly decreased during the pandemic.

10.
BMC Pulm Med ; 22(1): 408, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352423

ABSTRACT

BACKGROUND: Dyspnea is common after COVID-19 pneumonia and can be characterized by a defective CO2 diffusion (DLCO) despite normal pulmonary function tests (PFT). Nevertheless, DLCO impairment tends to normalize at 1 year, with no dyspnea regression. The altered regional distribution of ventilation and a dysfunction of the peripheral lung may characterize dyspnea at 1 year after COVID-19 pneumonia. We aimed at assessing the pattern of airway resistance and inflammation and the regional ventilation inhomogeneity in COVID-19 pneumonia survivors at 12-months after hospital discharge. METHODS: We followed up at 1-year patients previously admitted to the respiratory units (intensive care or sub-intensive care unit) for COVID-19 acute respiratory failure at 1-year after hospital discharge. PFT (spirometry, DLCO), impulse oscillometry (IOS), measurements of the exhaled nitric oxide (FENO) and Electrical Impedance Tomography (EIT) were used to evaluate lung volumes, CO2 diffusion capacity, peripheral lung inflammation/resistances and the regional inhomogeneity of ventilation distribution. A full medical examination was conducted, and symptoms of new onset (not present before COVID-19) were recorded. Patients were therefore divided into two groups based on the presence/absence of dyspnea (defined as mMRC ≥1) compared to evaluate differences in the respiratory function derived parameters. RESULTS: Sixty-seven patients were admitted between October and December 2020. Of them, 42/67 (63%) patients were discharged alive and 33 were evaluated during the follow up. Their mean age was 64 ± 11 years and 24/33 (73%) were males. Their maximum respiratory support was in 7/33 (21%) oxygen, in 4/33 (12%) HFNC, in 14/33 (42%) NIV/CPAP and in 8/33 (24%) invasive mechanical ventilation. During the clinical examination, 15/33 (45%) reported dyspnea. When comparing the two groups, no significant differences were found in PFT, in the peripheral airway inflammation (FENO) or mechanical properties (IOS). However, EIT showed a significantly higher regional inhomogeneity in patients with dyspnea both during resting breathing (0.98[0.96-1] vs 1.1[1-1.1], p = 0.012) and during forced expiration (0.96[0.94-1] vs 1 [0.98-1.1], p = 0.045). CONCLUSIONS: New onset dyspnea characterizes 45% of patients 1 year after COVID-19 pneumonia. In these patients, despite pulmonary function test may be normal, EIT shows a higher regional inhomogeneity both during quiet and forced breathing which may contribute to dyspnea. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov NCT04343053, registration date 13/04/2020.


Subject(s)
COVID-19 , Male , Humans , Middle Aged , Aged , Female , COVID-19/complications , Follow-Up Studies , Carbon Dioxide , Lung , Dyspnea/etiology , Survivors , Inflammation
11.
Respir Care ; 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36347564

ABSTRACT

BACKGROUND: COVID-19-related ARDS is characterized by severe hypoxemia with initially preserved lung compliance and impaired ventilation/perfusion (V̇/Q̇) matching. PEEP can increase end-expiratory lung volume, but its effect on V̇/Q̇ mismatch in COVID-19-related ARDS is not clear. METHODS: We enrolled intubated and mechanically ventilated subjects with COVID-19 ARDS and used the automatic lung parameter estimator (ALPE) to measure V̇/Q̇. Respiratory mechanics measurements, shunt, and V̇/Q̇ mismatch (low V̇/Q̇ and high V̇/Q̇) were collected at 3 PEEP levels (clinical PEEP = intermediate PEEP, low PEEP [clinical - 50%], and high PEEP [clinical + 50%]). A mixed-effect model was used to evaluate the impact of PEEP on V̇/Q̇. We also investigated if PEEP might have a different effect on V̇/Q̇ mismatch in 2 different respiratory mechanics phenotypes, that is, high elastance/low compliance (phenotype H) and low elastance/high compliance (phenotype L). RESULTS: Seventeen subjects with COVID-related ARDS age 66 [60-71] y with a PaO2 /FIO2 of 141 ± 74 mm Hg were studied at low PEEP = 5.6 ± 2.2 cm H2O, intermediate PEEP = 10.6 ± 3.8 cm H2O, and high PEEP = 15 ± 5 cm H2O. Shunt, low V̇/Q̇, high V̇/Q̇, and alveolar dead space were not significantly influenced, on average, by PEEP. Respiratory system compliance decreased significantly when increasing PEEP without significant variation of PaO2 /FIO2 (P = .26). In the 2 phenotypes, PEEP had opposite effects on shunt, with a decrease in the phenotype L and an increase in phenotype H (P = .048). CONCLUSIONS: In subjects with COVID-related ARDS placed on invasive mechanical ventilation for > 48 h, PEEP had a heterogeneous effect on V̇/Q̇ mismatch and, on average, higher levels were not able to reduce shunt. The subject's compliance could influence the effect of PEEP on V̇/Q̇ mismatch since an increased shunt was observed in subjects with lower compliance, whereas the opposite occurred in those with higher compliance.

13.
BMC Med Educ ; 22(1): 647, 2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36031630

ABSTRACT

BACKGROUND: Point-of-care ultrasound (POCUS) has become an essential tool for anaesthesia and critical care physicians and dedicated training is mandatory. This survey describes the current state of Italian residency training programs through the comparison of residents' and directors' perspective. METHODS: Observational prospective cross-sectional study: 12-question national e-survey sent to Italian directors of anaesthesia and critical care residency programs (N = 40) and residents (N = 3000). Questions focused on POCUS teaching (vascular access, transthoracic echocardiography, focused assessment for trauma, transcranial Doppler, regional anaesthesia, lung and diaphragm ultrasound), organization (dedicated hours, teaching tools, mentors), perceived adequacy/importance of the training and limiting factors. RESULTS: Five hundred seventy-one residents and 22 directors completed the survey. Bedside teaching (59.4-93.2%) and classroom lessons (29.7-54.4%) were the most frequent teaching tools. Directors reported higher participation in research projects (p < 0.05 for all techniques but focused assessment for trauma) and simulation (p < 0.05 for all techniques but transthoracic echocardiography). Use of online teaching was limited (< 10%); however, 87.4% of residents used additional web-based tools. Consultants were the most frequent mentors, with different perspectives between residents (72.0%) and directors (95.5%; p = 0.013). Residents reported self-training more frequently (48.5 vs. 9.1%; p < 0.001). Evaluation was mainly performed at the bedside; a certification was not available in most cases (< 10%). Most residents perceived POCUS techniques as extremely important. Residents underestimated the relevance given by directors to ultrasound skills in their evaluation and the minimal number of exams required to achieve basic competency. Overall, the training was considered adequate for vascular access only (62.2%). Directors mainly agreed on the need of ultrasound teaching improvement in all fields. Main limitations were the absence of a standardized curriculum for residents and limited mentors' time/expertise for directors. CONCLUSION: POCUS education is present in Italian anaesthesia and critical care residency programs, although with potential for improvement. Significant discrepancies between residents' and directors' perspectives were identified.


Subject(s)
Anesthesia , Internship and Residency , Clinical Competence , Critical Care , Cross-Sectional Studies , Curriculum , Humans , Point-of-Care Systems , Prospective Studies , Surveys and Questionnaires
14.
Cells ; 11(3)2022 01 26.
Article in English | MEDLINE | ID: mdl-35159235

ABSTRACT

Beyond their role in hemostasis, platelets have emerged as key contributors in the immune response; accordingly, the occurrence of thrombocytopenia during sepsis/septic shock is a well-known risk factor of mortality and a marker of disease severity. Recently, some studies elucidated that the response of platelets to infections goes beyond a simple fall in platelets count; indeed, sepsis-induced thrombocytopenia can be associated with-or even anticipated by-several changes, including an altered morphological pattern, receptor expression and aggregation. Of note, alterations in platelet function and morphology can occur even with a normal platelet count and can modify, depending on the nature of the pathogen, the pattern of host response and the severity of the infection. The purpose of this review is to give an overview on the pathophysiological interaction between platelets and pathogens, as well as the clinical consequences of platelet dysregulation. Furthermore, we try to clarify how understanding the nature of platelet dysregulation may help to optimize the therapeutic approach.


Subject(s)
Sepsis , Shock, Septic , Thrombocytopenia , Blood Platelets/metabolism , Hemostasis , Humans , Sepsis/complications , Sepsis/metabolism , Thrombocytopenia/metabolism
15.
Biomed Eng Online ; 21(1): 5, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35073928

ABSTRACT

BACKGROUND: Systems aiding in selecting the correct settings for mechanical ventilation should visualize patient information at an appropriate level of complexity, so as to reduce information overload and to make reasoning behind advice transparent. Metaphor graphics have been applied to this effect, but these have largely been used to display diagnostic and physiologic information, rather than the clinical decision at hand. This paper describes how the conflicting goals of mechanical ventilation can be visualized and applied in making decisions. Data from previous studies are analyzed to assess whether visual patterns exist which may be of use to the clinical decision maker. MATERIALS AND METHODS: The structure and screen visualizations of a commercial clinical decision support system (CDSS) are described, including the visualization of the conflicting goals of mechanical ventilation represented as a hexagon. Retrospective analysis is performed on 95 patients from 2 previous clinical studies applying the CDSS, to identify repeated patterns of hexagon symbols. RESULTS: Visual patterns were identified describing optimal ventilation, over and under ventilation and pressure support, and over oxygenation, with these patterns identified for both control and support modes of mechanical ventilation. Numerous clinical examples are presented for these patterns illustrating their potential interpretation at the bedside. CONCLUSIONS: Visual patterns can be identified which describe the trade-offs required in mechanical ventilation. These may have potential to reduce information overload and help in simple and rapid identification of sub-optimal settings.


Subject(s)
Decision Support Systems, Clinical , Respiration, Artificial , Decision Making , Humans , Positive-Pressure Respiration , Retrospective Studies
16.
Radiol Med ; 127(2): 162-173, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35034320

ABSTRACT

PURPOSE: COVID-19-related acute respiratory distress syndrome (ARDS) is characterized by the presence of signs of microvascular involvement at the CT scan, such as the vascular tree in bud (TIB) and the vascular enlargement pattern (VEP). Recent evidence suggests that TIB could be associated with an increased duration of invasive mechanical ventilation (IMV) and intensive care unit (ICU) stay. The primary objective of this study was to evaluate whether microvascular involvement signs could have a prognostic significance concerning liberation from IMV. MATERIAL AND METHODS: All the COVID-19 patients requiring IMV admitted to 16 Italian ICUs and having a lung CT scan recorded within 3 days from intubation were enrolled in this secondary analysis. Radiologic, clinical and biochemical data were collected. RESULTS: A total of 139 patients affected by COVID-19 related ARDS were enrolled. After grouping based on TIB or VEP detection, we found no differences in terms of duration of IMV and mortality. Extension of VEP and TIB was significantly correlated with ground-glass opacities (GGOs) and crazy paving pattern extension. A parenchymal extent over 50% of GGO and crazy paving pattern was more frequently observed among non-survivors, while a VEP and TIB extent involving 3 or more lobes was significantly more frequent in non-responders to prone positioning. CONCLUSIONS: The presence of early CT scan signs of microvascular involvement in COVID-19 patients does not appear to be associated with differences in duration of IMV and mortality. However, patients with a high extension of VEP and TIB may have a reduced oxygenation response to prone positioning. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/therapy , Microvessels/diagnostic imaging , Respiration, Artificial/methods , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Intensive Care Units , Italy , Length of Stay/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Prospective Studies , SARS-CoV-2
17.
J Cardiothorac Vasc Anesth ; 36(3): 815-824, 2022 03.
Article in English | MEDLINE | ID: mdl-34404594

ABSTRACT

OBJECTIVES: To determine whether driving pressure and expiratory flow limitation are associated with the development of postoperative pulmonary complications (PPCs) in cardiac surgery patients. DESIGN: Prospective cohort study. SETTING: University Hospital San Raffaele, Milan, Italy. PARTICIPANTS: Patients undergoing elective cardiac surgery. MEASUREMENTS AND MAIN RESULTS: The primary endpoint was the occurrence of a predefined composite of PPCs. The authors determined the association among PPCs and intraoperative ventilation parameters, mechanical power and energy load, and occurrence of expiratory flow limitation (EFL) assessed with the positive end-expiratory pressure test. Two hundred patients were enrolled, of whom 78 (39%) developed one or more PPCs. Patients with PPCs, compared with those without PPCs, had similar driving pressure (mean difference [MD] -0.1 [95% confidence interval (CI), -1.0 to 0.7] cmH2O, p = 0.561), mechanical power (MD 0.5 [95% CI, -0.3 to 1.1] J/m, p = 0.364), and total energy load (MD 95 [95% CI, -78 to 263] J, p = 0.293), but they had a higher incidence of EFL (51% v 38%, p = 0.005). Only EFL was associated independently with the development of PPCs (odds ratio 2.46 [95% CI, 1.28-4.80], p = 0.007). CONCLUSIONS: PPCs occurred frequently in this patient population undergoing cardiac surgery. PPCs were associated independently with the presence of EFL but not with driving pressure, total energy load, or mechanical power.


Subject(s)
Cardiac Surgical Procedures , Cardiac Surgical Procedures/adverse effects , Humans , Lung , Positive-Pressure Respiration/adverse effects , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Prospective Studies
18.
ESC Heart Fail ; 9(1): 263-269, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34755468

ABSTRACT

Recent data support the existence of a distinctive 'vascular' phenotype with the involvement of both pulmonary parenchyma and its circulation in COVID-19 pneumonia. Its prompt identification is important for the accurate management of COVID-19 patients. The aim is to analyse the pro and contra of the different modalities to identify the 'vascular' phenotype. Chest computed tomography scan and angiogram may quantify both parenchyma and vascular damage, but the presence of thrombosis of pulmonary microcirculation may be missed. Increased d-dimer concentration confirms a thrombotic state, but it cannot localize the thrombus. An elevation of troponin concentration non-specifically reflects cardiac injury. Echocardiogram and electrocardiogram provide specific signs of right ventricular pressure overload. This is particularly relevant for the 'vascular' phenotype, which does not necessarily represent the result of thrombo-embolic venous complications, but more frequently, it is the result of pulmonary microcirculation thrombosis in situ and needs immediate therapeutic action. CONDENSED ABSTRACT: Despite diagnosis of the 'vascular' phenotype of COVID-19 pneumonia may be subtle, the evidence indicates a reasonable possibility of identifying it already in the initial stage of the infection. Chest computed tomography scan and angiogram, increased d-dimer concentration, and elevation of troponin concentration may be not sufficient to identify 'vascular' phenotype. Echocardiogram and electrocardiogram provide specific signs of right ventricular pressure overload. This is particularly relevant for the 'vascular' phenotype, which does not necessarily represent the result of thrombo-embolic venous complications, but more frequently, it is the result of pulmonary microcirculation thrombosis in situ and needs immediate therapeutic action.


Subject(s)
COVID-19 , Thrombosis , Humans , Lung , Phenotype , SARS-CoV-2
19.
J Clin Monit Comput ; 36(1): 161-167, 2022 02.
Article in English | MEDLINE | ID: mdl-33385260

ABSTRACT

Mechanically ventilated patients with ARDS due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) seem particularly susceptible to AKI. Our hypothesis was that the renal blood flow could be more compromised in SARS-CoV-2 patients than in patients with "classical" ARDS. We compared the renal resistivity index (RRI) and the renal venous flow (RVF) in ARDS patients with SARS-CoV-2 and in ARDS patients due to other etiologies. Prospective, observational pilot study performed on 30 mechanically ventilated patients (15 with SARS-COV-2 ARDS and 15 with ARDS). Mechanical ventilation settings included constant-flow controlled ventilation, a tidal volume of 6 ml/kg of ideal body weight and the PEEP level titrated to the lowest driving pressure. Ultrasound Doppler measurements of RRI and RVF pattern were performed in each patient. Patients with SARS-COV-2 ARDS had higher RRI than patients with ARDS (0.71[0.67-0.78] vs 0.64[0.60-0.74], p = 0.04). RVF was not-continuous in 9/15 patients (71%) in the SARS-COV-2 ARDS group and in and 5/15 (33%) in the ARDS group (p = 0.27). A linear correlation was found between PEEP and RRI in patients with SARS-COV-2 ARDS (r2 = 0.31; p = 0.03) but not in patients with ARDS. Occurrence of AKI was 53% in patients with SARS-COV-2 ARDS and 33% in patients with ARDS (p = 0.46). We found a more pronounced impairment in renal blood flow in mechanically ventilated patients with SARS-COV-2 ARDS, compared with patients with "classical" ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Pilot Projects , Prospective Studies , Renal Circulation , Respiration, Artificial , Respiratory Distress Syndrome/therapy , SARS-CoV-2
20.
Anesthesiology ; 135(6): 1066-1075, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34644374

ABSTRACT

BACKGROUND: Experimental and pilot clinical data suggest that spontaneously breathing patients with sepsis and septic shock may present increased respiratory drive and effort, even in the absence of pulmonary infection. The study hypothesis was that respiratory drive and effort may be increased in septic patients and correlated with extrapulmonary determinant and that high-flow nasal cannula may modulate drive and effort. METHODS: Twenty-five nonintubated patients with extrapulmonary sepsis or septic shock were enrolled. Each patient underwent three consecutive steps: low-flow oxygen at baseline, high-flow nasal cannula, and then low-flow oxygen again. Arterial blood gases, esophageal pressure, and electrical impedance tomography data were recorded toward the end of each step. Respiratory effort was measured as the negative swing of esophageal pressure (ΔPes); drive was quantified as the change in esophageal pressure during the first 500 ms from start of inspiration (P0.5). Dynamic lung compliance was calculated as the tidal volume measured by electrical impedance tomography, divided by ΔPes. The results are presented as medians [25th to 75th percentile]. RESULTS: Thirteen patients (52%) were in septic shock. The Sequential Organ Failure Assessment score was 5 [4 to 9]. During low-flow oxygen at baseline, respiratory drive and effort were elevated and significantly correlated with arterial lactate (r = 0.46, P = 0.034) and inversely with dynamic lung compliance (r = -0.735, P < 0.001). Noninvasive support by high-flow nasal cannula induced a significant decrease of respiratory drive (P0.5: 6.0 [4.4 to 9.0] vs. 4.3 [3.5 to 6.6] vs. 6.6 [4.9 to 10.7] cm H2O, P < 0.001) and effort (ΔPes: 8.0 [6.0 to 11.5] vs. 5.5 [4.5 to 8.0] vs. 7.5 [6.0 to 12.6] cm H2O, P < 0.001). Oxygenation and arterial carbon dioxide levels remained stable during all study phases. CONCLUSIONS: Patients with sepsis and septic shock of extrapulmonary origin present elevated respiratory drive and effort, which can be effectively reduced by high-flow nasal cannula.


Subject(s)
Cannula , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Respiratory Rate/physiology , Shock, Septic/physiopathology , Shock, Septic/therapy , Aged , Cohort Studies , Electric Impedance/therapeutic use , Female , Humans , Intensive Care Units , Male , Middle Aged , Oxygen Inhalation Therapy/instrumentation , Oxygen Inhalation Therapy/methods , Sepsis/physiopathology , Sepsis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...